					CS (HONS.) 2020-21				
			\$		ER – I (syllabus-2019)				
Paper	Core Course - 1	No of Lectu- res	Faculty	July Paper	20 – December 20 Core Course - 2	No of Lectu- res	Faculty	Internal Assessment by College	Parent Teacher Meeting
PHS- A-CC-	Mathematical Physics – I (Theory)	60		PHS- A-CC-	Mechanics (Theory)	60			
1-1TH	1. Calculus	20	GDP	1-2TH	1. Fundamentals of Dynamics	12	BC		
	2. Vector Algebra and Vector Calculus	25	DP		2. Work and Energy	8	BC	3 rd week of November	1 st week of December
	3. Matrices	15	SD		3. Gravitation and Central Force Motion	10	SD	-	
					4. Non-Inertial Systems	12	SN	-	
				-	5. Rotational Dynamics	12	SN	_	
					6. Fluid Motion	06	DP		
PHS- A-CC-	Mathematical Physics - I (Practical)	60	SN+	PHS- A-CC-	Mechanics (Practical)	60			
1-1P	1. Introduction to plotting graphs with Gnuplot	09	GDP	1-2P	1.Moment of Inertia & Modulus of Rigidity		BC + SD		
	2. Introduction to programming in python:		-		2. Moment of Inertia of a Flywheel		-	3 rd week of November	1 st week of December
	(a) Introduction	08			3. To determine the Young modulus, modulus of				

		rigidity and Poisson ratio of the material of a wire by Searle's Dynamic method.
(b) The python iterables data type	15	4. To determine the value of g using Bar Pendulum.
(c) Problems and applications	28	5. To determine the height of a building (or a suitable vertical height) using sextant.
		6. Determination of Young's modulus of the material of a beam by the method of flexure.

Paper	Core Course - 3	No of Lectu- res	Faculty	Paper	ary 21 – June 21 Core Course - 4	No of Lectu- res	Faculty	Internal Assessment by College	
PHS- A-CC-	Electricity and Magnetism (Theory)	60		PHS- A-CC-	Waves and Optics (Theory)	60			incering
2-3- ТН	1. Dirac delta function and it's properties	03	SN	2-4-TH	1. Oscillations	08	BC		
	2. Electrostatics	12	SN		2.Superposition of Harmonic oscillations	04	BC	3 rd week of November	1 st week of December
	3. Dielectric properties of matter	06	GDP		3. Wave Motion	04	BC	-	
	4. Method of Images	04	DP	-	4. Superposition of Harmonic waves	09	BC	-	
	5. Electrostatic Energy	03	DP		5. Wave Optics	04	DP	-	
	6. The Magnetostatic Field	10	SD	-	6. Interference	10	DP	-	
	7. Magnetic properties of matter	07	SD		7. Interferometers	05	DP		
	8. Electro-magnetic induction	07	SD		8. Diffraction	16	GDP	-	
	9. Electrical circuits	08	SD					-	

PHS-	Electricity and	60		PHS-	Waves and Optics	60			
A-CC-	Magnetism (Practical)		SN +	A-CC-	(Practical)				
2-3-P	1. Introduction and		SD	2-4-P	1. To determine the				
	Overview				frequency of an electric		BC +		
					tuning fork by Melde's		GDP		
					experiment and verify $\lambda^2 - T$				
					law.			3 rd week of	1 st week of
	2. Basics of scientific				2. To study the variation of			November	December
	computing				refractive index of the				
					Material of a prism with				
					wavelengths and hence the				
					Cauchy constants using				
					mercury/helium source.		_		
	3. Errors and error				3. To determine wavelength				
	Analysis				of sodium light using				
					Fresnel Biprism.		_		
	4. Introduction to				4. To determine wavelength				
	plotting graphs with				of sodium light/radius of				
	Gnuplot / QtiPlot (or				plano convex lens using				
	some other GUI based				Newton's Rings.				
	free software like								
	Grace, Origin etc.)								
	5. Introduction to				5. To determine the		-		
	programming in				thickness of a thin paper by				
	python:				measuring the width of the				
	1.0				interference fringes				
					produced by a wedge-				
					shaped Film.				
	6. Programs				6. Measurement of the				
					spacing between the				
					adjacent slits in a grating by				
					measuring sin θ vs graph of a				
					certain order of grating				
					spectra.				

			S		CS (HONS.) 2020-21 R – III (syllabus-2019)				
			61		20 – December 20				
Paper	Core Course - 5	No of Lectu- res	Faculty	Paper	Core Course - 6	No of Lectu -res	Faculty	Internal Assessment by College	
PHS- A-CC-	Mathematical Physics - II (Theory)	60		PHS- A-CC-	Thermal Physics (Theory)	60			
3-5- TH	1. Fourier Series	10	SD	3-6-TH	1. Introduction to Thermodynamics	25	GDP		
	2. Frobenius Method and Special Functions	20	SD		2. Thermodynamic Potentials	15	GDP	3 rd week of November	1 st week of December
	3. Some Special Integrals	04	SD		3. Kinetic Theory of Gases	15	DP		
	4. Integrals Transforms	10	SN		4. Conduction of Heat	05	DP		
	5. Introduction to probability	06	SN						
	6. Partial Differential Equations	10	SN						
PHS- A-CC-	Mathematical Physics - II (Practical)	60	SN +	PHS- A-CC-	Thermal Physics (Practical)	60	DP +		
3-5-P	1. Introduction to numpy and scipy:-		GDP	3-6-P	1. Determination of the coefficient of thermal expansion of a metallic rod using an optical lever.		BC	3 rd week of	1 st week of
	• the numpy array				2. Calibration of a thermocouple by direct measurement of the thermo-			November	December

					emf using potentiometer and the constants.				
	• Using numpy for matrix operators (the 2D numpy array)				3. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.				
	Scientific Applications				4. To determine the boiling point of a liquid using Platinum Resistance Thermometer (PRT).				
	2. Introduction to mathplotlib (Using the pyplot submodule)		-		5. To determine Temperature Coefficient of Resistance using Carey Foster bridge.				
Paper	Core Course - 7	No of Lectu- res	Faculty	Paper	Skill Enhancement Courses – SEC-A	No of Lectu -res	Faculty	Internal Assessment by College	
PHS- A-CC-	Modern Physics (Theory)	60		PHS- A-3-	Scientific Writing (Theory)	15			
3-7- TH	1. Radiation and its nature.	15	BC	SEC- A-1 TH	1. Introduction to L ATEX	2	SD		
	2. Basics of Quantum Mechanics	15	BC		2. Document classes	1	SD	3 rd week of November	1 st week of December
	3. Nuclear Structure	10	BC	-	3. Page Layout	2	SD	-	
	4. Interaction with and within nucleus	12	DP		4. List structures	1	SD		

	5. Lasers	08	DP		5. Representation of mathematical equations	5	SN		
					6. Customization of fonts	1	SN	-	
					7. Writing tables	2	SN	-	
					8. Figures	1	SN	-	
PHS-	Modern Physics	60	BC +	PHS-	Scientific Writing		SD +		
A-CC- 3-7-P	(Practical) 1. Measurement of Plank constant using LED.		SD	A-3- SEC- A-1 PR	(Project/Practical) 1. Writing articles/ research papers/reports		SN		
	2. Verification of Stefan's law of radiation by the measurement of voltage and current of a torch bulb glowing it beyond draper point.				2. Writing mathematical derivation		-	3 rd week of November	1 st week of December
	3. Determination of e/m of electrons by using bar magnet.				3. Writing Resume		_		
	4. To study the photoelectric effect: variation of photocurrent versus intensity and wavelength of light.		-		4. Writing any documentation of a practical done in laboratory with results, tables graphs.		-		
	5. To show the tunneling effect in tunnel diode using I-V characteristics.				5. Writing graphical analysis taking graphs plotted in gnuplot				

				PHYSI	CS (HONS.) 2020-21				
					ER – IV(syllabus-2019)				
Paper	Core Course - 8	No of Lectu- res	Faculty	Jan Paper	uary 21 – June 21 Core Course - 9	No of Lectu -res	Faculty	Internal Assessment by College	Parent Teacher Meeting
PHS- A-CC-	Mathematical Physics - III (Theory)	60		PHS- A-CC-	Analog Systems and Applications (Theory)	60			
4-8- TH	1. Complex Analysis	20	SN	4-9-TH	1. Circuits and Network	04	BC		
	2Variational calculus in Physics	20	SN		2. Semiconductor Diodes and application	08	BC	3 rd week of November	1 st week of December
	3. Special theory of Relativity	20	SD		3. Bipolar Junction transistors and biasing	10	BC		
				-	4. Field Effect transistors	05	BC		
				1	5. Regulated power supply	03	BC	-	
				1	6. Amplifiers	05	BC		
					7. Feedback amplifiers and OPAMP	15	GDP		
					8. Multivibrator	05	GDP	1	
					9. Oscillators	05	GDP		
PHS- A-CC-	Mathematical Physics – III (Practical)	60	SN+	PHSA- CC-4-	Analog Systems and Applications (Practical)	60			
4-8-P	1. Exploring Gaussian Integrals and the delta function		SD	9-P	1. To study the reverse characteristics of Zener diode and study the load and line regulation.		BC + DP		
	2. Solution of Differential Equation				2. To study the static characteristics of BJT in CE Configuration.			3 rd week of November	1 st week of December

	3. Special functions				3. To design and study the frequency response of the BJT amplifier in CE mode.				
	4. Solution of some basic PDEs				4. Construction of a series regulated power supply from an unregulated power supply.		-		
	5. Fourier Series	1			5. To study OPAMP: inverting amplifer, non inverting amplier, adder, substractor, comparator, Schmitt trigger, Integrator, differentiator, relaxation oscillator.				
			-		6. To design a Wien bridge oscillator for given frequency using an op-amp.		-		
-				-	•				
Paper	Core Course - 10	No of Lectu- res	Faculty	Paper	Skill Enhancement Courses – SEC-B (Technical Skill)	No of Lectu -res	Faculty	Internal Assessment (by College)	Parent Teacher Meeting
PHS- A-CC-	Quantum Mechanics (Theory)	60		PHS- A-4-	ARDUINO (Theory)	15			8
4-10- TH	1. Wavepacket description	05	DP	SEC- B-1-	1. Introduction to Arduino	02	BC		
	2. General discussion of bound states in an arbitrary potential	08	DP	TH	2. Basic ideas	03	BC	3 rd week of November	1 st week of December
	3. Quantum mechanics of simple harmonic oscillator	06	DP		3. Arduino Programming:	10	GDP		
	4. Quantum theory of hydrogen-like atoms	08	DP						

	5. Generalized Angular Momenta and Spin	10	SD				
	6. Spectra of Hydrogen atom and its fine structure	05	SD				
	7. Atoms in Electric & Magnetic Fields	08	SD				
	8. Many electron atoms	10	SD				
PHS- A-CC- 4-10-P	Quantum Mechanics (Practical) 1. Finding eigenstates solving transcendental equation 2. Use of shooting algorithm 3. Time Evaluation of Wave Packet	60	SN + GDP	PHS- A-4- SEC- B-1-PR	ARDUINO (Practical/Project)1. LED Blinking and fading.2. Measurement of voltages (Below 5 V and above).3. Interfacing 7 Segment display.4. Construction of thermometer using LM35 or Others.5. Construct the experimental set up for studying simple pendulum and hence determine the acceleration's due to gravity.6. Construct data logger for studying charging and discharging of RC circuit.	BC + GDP	

				PHYSIC	CS (HONS.) 2020-21				
			S		ER – V(syllabus-2018)				
Paper	Core Course - 8	No of Lectu- res	Faculty	July 2 Paper	20 – December 20 Core Course - 9	No of Lectu- res	Faculty	Internal Assessment by College	
PHS- A-CC- 5-11-	Quantum Mechanics and Applications (Theory)	60		PHS- A-CC- 5-12-	Solid State Physics (Theory)	60			
TH	1. Schrodinger Equation	05	SN	ТН	1. Crystal Structure	12	GDP		
	2. General discussion of bound states in an arbitrary potential	08	SN	Dynamics3rd week NovembSN3. Magnetic Properties of Matter08DPSD4. Dielectric Properties of Materials08BC	3 rd week of November	1 st week of December			
	3. Quantum mechanics of simple harmonic oscillator.	06	SN		e 1	08	DP		
	4. Quantum theory of hydrogen-like atoms	08	SD			08	BC		
	5. Generalized Angular Momenta and Spin.	10	SD		5. Ferroelectric Properties of Materials	04	BC		
	6. Spectra of Hydrogen atom and its _ne structure	05	SD		6. Elementary band theory	12	BC		
	7. Atoms in Electric & Magnetic Fields	08	SD		7. Superconductivity	06	BC		
	8. Many electron atoms	10	SD						
PHS- A-CC- 5-11-P	Quantum Mechanics and Applications (Practical)	60	SN + SD	PHSA- CC-5- 12-P	Solid State Physics (Practical)	60			
	1. Finding eigenstates solving transcendental equation			12-1	1. To study BH hysteresis of ferromagnetic material		GDP + BC	3 rd week of November	
	2. Use of shooting algorithm				2. To determine dielectric constant of different materials (solid and liquid)				1 st week of December

	3. Time Evaluation of Wave Packet				 using fixed frequency alternating source. 3. Measurement of variation of resistivity in a semiconductor and investigation of intrinsic band gap using linear four probe. 4. Measurement of hall voltage by four probe method 5. To study temperature coefficient of a semiconductor (NTC thermistor) and construction of temperature controller with comperator and relay switch. 6. Measurement of magnetic susceptibility of solids 				
Paper	Discipline Specific Elective Courses	No of Lectu-	Faculty	Paper	Discipline Specific Elective Courses	No of Lectu- res	Faculty	Internal Assessment by College	
PHS- A-5-	Laser and Fiber Optics (Theory)	res 75		PHS- A-5-	Astronomy and Astrophysics - (Theory)	7 5		by Conege	precung
DSE- A1(b)-	1.Einstein coefficients and Rate equations	20	BC	DSE- B1(a)-	1. Tools of Astronomy	15	SD		
TH	2. Basic properties of laser	04	BC	TH	2. Stars and stellar systems	25	SD	3 rd week of	1 st week of
	3. Resonantors	08	BC		3. Galaxies and the Universe	10	BC	November	December
	4. Transient effect	05	BC	1	4. Cosmology	25	SN		
	5. Basic Laser Systems	07	DP						<u> </u>

	6. Practical properties and uses of laser	05	DP						
	7. Fiber optics	12	DP	-					
	8. Holography	04	DP						
	9. Introductory Nonlinear	10	DP						
	Optics								
	Laser and Fiber Optics	15	BC +		Astronomy and	15	SD +		
l	(Tutorial)		DP		Astrophysics - (Tutorial)		SN		
Danar	Dissipling Specific	No of	Foorler	Danar	Dissipling Specific Flocting	No of	Eagultz.	Internal	Parent
Paper	Discipline Specific Elective Courses	Lectu-	Faculty	Paper	Discipline Specific Elective Courses	Lectu-	Faculty	Assessment	
	Liecuve Courses	res			Courses	res		by College	Meeting
PHS-	Nuclear and Particle	75						~,8-	8
A-5-	Physics - (Theory))								
DSE-	1. Introduction	5	GDP						
B1(b)- TH	2. Nuclear Reactions	10	GDP						
	3. Interaction of Nuclear Radiation with matter	15	GDP						
	4. Detector for Nuclear Radiations	15	GDP						
	5. Particle Accelerators	15	SN						
	6. Particle Physics	15	SN						
	Nuclear and Particle	15	GDP +						
	Physics - (Tutorial)		SN						

			SI		CS (HONS.) 2020-21 R – VI (syllabus-2018)				
Paper	Core Course - 5	No of Lectu- res	Faculty		ary 21 – June 21 Core Course - 6	No of Lectu- res	Faculty	Internal Assessment by College	
PHS- A-CC-	Electromagnetic Theory (Theory)	60		PHS- A-CC-	Statistical Mechanics (Theory)	60			
6-13- TH	1. Maxwell Equations	10	SN	6-14- TH	1. Classical Statistical Mechanics	25	DP	3 rd week of	1 st week of
	2. EM Wave Propagation in Unbounded Media	20	SN		2. Classical Theory of Radiation	06	BC		
	3. EM Wave in Bounded Media	10	SN		3. Quantum Theory of Radiation	07	SD	November	December
	4. Electromagnetic origin of Wave Optics	10	SN	4	4. Bose-Einstein Statistics	12	SD		
	5. Polarization in uniaxial crystals		GDP	-	5. Fermi-Dirac Statistics	10	SD		
	6. Rotatory polarization.	10	GDP	1					
PHS- A-CC-	Electromagnetic Theory (Practical)	60	GDP GDP SD +	PHS- A-CC-	Statistical Mechanics (Practical)	60	DP +		
6-13-P	1. To determine Brewster's angle for air- glass interface using a prism		GDP	6-14-P	1. Study of Random Numbers and Time series		SN		
	2. To study Fresnels law by the re_ection on the surface of a prism.				2. Applications of Random Numbers			3 rd week of November	1 st week of December
	3. To verify the Malus law using a pair of polaroids.				3. Scaling and plots, exponents and parameters				
	4. To study the speci_c rotation of opticlly active solution using polarimeter.								

	 5. Determination of wavelength and velocity of ultrasonic waves ion a liquid (kerosene, Xylene etc). 6. To analyze elliptically polarized light by using babinate compensator. 7. To determine dispersive power and resolving power of a plane diffraction grating. 		-				-		
Paper	Discipline Specific Elective Courses	No of Lectu- res	Faculty	Paper	Discipline Specific Elective Courses	No of Lectu- res	Faculty	Internal Assessment by College	
PHS- A-6- DSE-	Nano Materials andApplications - (Theory)1. Nanoscale Systems	75 10	GDP	PHS- A-6- DSE-	Communication Electronics - (Theory) 1. Electronic	75 10	BC		
A2(a) - TH	2. Synthesis of Nanostructure Materials	15	GDP	B2(a)- TH	communication 2. Analog Modulation	15	BC	3 rd week of	1 st week of
	3. Characterization	10	SN		3. Analog Pulse Modulation	10	BC	November	December
	4. Optical Properties	15	SD		4. Digital Pulse Modulation	15	DP		
	5. Electron Transport	10	SD		5. Introduction to Communication and Navigation systems	25	DP		
	6. Applications	15	GDP						
	Nano Materials and Applications -	15	SD + GDP		Communication Electronics - (Tutorial)	15	BC + DP		

			S (HONS.) ear (1+1+1-			
Paper	First Term July 20– Oct20	No of Lectures	Faculty	Second Term Nov 20 – Jan 21	No of Lectures	Faculty
V	Unit-I			Unit-I		
	1. Classical Mechanics II	16		1. Classical Mechanics II	14	
	i) Central Force Problem	09	SN	iii) Lagrangian and Hamiltonian formulation of Classical Mechanics	14	SN
	ii) Mechanics of Ideal Fluid	07	SN			
	2. Special Theory of Relativity	16		2. Special Theory of Relativity	14	
	i) Introduction	04	SN	iii) Vectors and Tensors	08	SN
	ii) Special Theory of Relativity	12	SN	iv) Invariant Intervals	06	SN
	Unit-II			Unit-II		
	1. Quantum Mechanics II	18		1. Quantum Mechanics II	12	
	i) Time dependent and time independent Schrodinger Eqn.	05	GDP	iii) Schrodinger Eq. in Spherical polar co-ordinate	12	GDP
	ii) Simple Application of Quantum Mechanics	13	GDP			
	2. Atomic Physics	20		2. Atomic Physics	10	
	i) Atomic Spectra	12	SD	iv) Molecular Spectroscopy	04	SD
	ii) Vector atom model	05	SD	v) Laser Physics	06	SD
	iii) Many electron model	03	SD			
Paper	First Term	No of	Faculty	Second Term	No of	Faculty
	July 19 – Oct 19	Lectures		Nov 19 – Jan 20	Lectures	
VI	Unit-I			Unit-I		
	1. Nuclear and Particle Physics I	30		2. Nuclear and Particle Physics II	30	
	i) Bulk properties of Nuclei	06	GDP	i) Nuclear reactions	05	SD
	ii) Nuclear structure	10	GDP	ii) Nuclear fission and fusion	06	SD
	iii) Unstable Nuclei			iii) Elementary particles		
	a) Alpha decay	04	GDP	a) Four basic interactions	04	SN
	b) Beta decay	05	GDP	b) Classifications	05	SN

	c) Gama decay	05	GDP	iv) Particle accelerator and detector	04	SN
				v) Nuclear Astrophysics	06	SN
	Unit-II			Unit-II		
	1. Solid State Physics I	30		2. Solid State Physics II	30	
	i) Crystal Structure	12	BC	i) Dielectric Property of materials	05	BC
	ii) Structure of Solids	18	BC	ii) Magnetic properties of materials	12	BC
				iii) Lattice Vibrations	07	BC
				iv) Super conductivity	06	BC
VIIA	Unit-I			Unit-I		
	1. Statistical Mechanics	16		1. Statistical Mechanics	14	
	i) Microstates and Macrostates	07	SN	iv) Quantum Statistical Mechanics	14	SN
	ii) Classical Stat. Mach.	03	SN			
	iii) Motivations for Quantum Statistics	06	SN			
	2. Electromagnetic Theory	16		2. Electromagnetic Theory	14	
	i) Generalization of Ampere's law	09	SD	iii) EM Waves in conducting medium	06	SD
	ii) EM Wave in an isotropic dielectric	07	SD	iv) Dispersion	04	SD
				v)Scattering	04	SD

	PHYSICS (GEN.) 2020-21 SEMESTER – I (CBCS) July 20 – December 20											
Paper	General/Elective Course - 1	No of Lectur es	Facul ty	Paper	General/Elective Course - 1	No of Lectur es	Faculty	Internal Assessment (by College)	Parent Teacher Meeting			
	Mechanics (Theory)	60			Mechanics (Practical)	60						
	1. Mathematical Methods	15	GDP		1. Determination of Moment of inertia of cylinder/ rectangular bar							
PHS- G-CC- 1-1TH	2. Introduction to Newtonian Mechanics	05	BC	PHS- G-CC- 1-1P	2. Determination of Y- Modulus of a metal bar by the method of flexure.		DP + BC	3 rd week of November	1 st week of Decembe			
(GE-1)	3. Rotational Motion	10	BC	July 20 – Paper N 1. M 2. G-CC- 1-1P (GE-1) 3. R m 4. N fil 5.	3. Determination of Rigidity modulus of the material of a wire.				r			
	4. Central force and Gravitation	10	SD		4. Determination of Moment of Inertia of a flywheel.		_					
	5. Oscillations	09	SD		5. Determination of g using bar pendulum							
	6. Elasticity	06	DP									
	7. Surface Tension	05	DP	1			-					

					S (GEN.) 2020-21				
					FER – II (CBCS)				
Paper	GeneralElective Course - 2	No of Lectur es	Faculty	Janua Paper	ry 21 – June 21 GeneralElective Course - 2	No of Lectur es	Faculty	Internal Assessment by College	
	Electricity and Magnetism (Theory)	60			Electricity and Magnetism (Practical)	60			
PHS-	1. Essential Vector Analysis	5	GDP	PHS-	1. Determination of unknown resistance by Carey Foster method.		SN+	3 rd week of	1 st week of
G-CC- 2-2TH (GE-2)	2. Electrostatics	25	SN	G-CC- 2-2P (GE-2)	2. Measurement of a current owing through a register using potentiometer.		GDP	November	December
	3. Magnetism	15	SD		3. Determination of the horizontal components of earth's magnetic field.				
	4. Electro-magnetic induction	05	BC		4. Conversion of an ammeter to a voltmeter.				
	5. Electrodynamics	10	BC		5. Conversion of a voltmeter to an Ammeter.				

				SEMEST	<u>S (GEN.) 2020-21</u> FER – III (CBCS) – December 20				
Paper	General/Elective Course - 3	No of Lectures	Faculty	Paper	General/Elective Course - 3	No of Lectur es	Faculty	Internal Assessment (by College)	Parent Teacher Meeting
	Thermal Physics and Statistical Mechanics (Theory)	60			Thermal Physics and Statistical Mechanics (Practical)	60			
PHS- G-CC- 3-3TH (GE-3)	1. Laws of Thermodynamics	18	GDP	PHS- G-CC- 3-3P (GE-3)	1. Determination of the coefficient of thermal expansion of a metallic rod using an optical lever		DP + SN	3 rd week of November	1 st week of December
	2. Thermodynamic Potentials	09	GDP		2. Verication of Stefan's law using a torch bulb glowing beyond draper point.				
	3. Kinetic Theory of Gases	10	BC		3. To determine the Thermal Coefficient of a resistance using Carey- Foster bridge.				
	4. Theory of Radiation	08	SN		4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.				
	5. Statistical Mechanics	15	SN		5. Determination of the Pressure coefficient of air using Jolly's apparatus.				

				PHYSIC	CS (GEN.) 2020-21				
					TER – IV(CBCS) ary 21 – June 21				
Paper	General/Elective Course - 4	No of Lectu- res	Faculty	Paper	General/Elective Course - 4	No of Lectu -res	Faculty	Internal Assessment by College	Parent Teacher Meeting
	Waves and Optics (Theory)	60			Waves and Optics (Practical)	60			
PHS- G-CC-	1. Acoustics	10	SD	PHS- G-CC-	1. Determination of the focal length of a concave lens by auxiliary lens method.		BC + SD	3 rd week of November	1 st week of December
4-4TH (GE-4)	2. Superposition of vibrations	05	SD	PHS- 1. G-CC- max 4-4P 2. (GE-4) free wi use 3. of a r max	2. Determination of the frequency of a tuning fork with the help of sonometer using n-l curve.				
	3. vibrations in string	08	SD		3. Determination of radius of curvature / wavelength of				
	4. Introduction to wave optics	02	BC		a monochromatic / quasi monochromatic light using Newton's ring.				
	5. Interference	15	BC		4. Measurement of the thickness of a paper from a				
	6. Diffraction	10	GDP	1	wedge shaped film.				
	7. Polarization	10	GDP		5. Measurement of specific rotation of active solution (e.g., sugar solution) using polarimeter.				