SEMESTER - I (CBCS)

				July	22 – December 22				
Paper	Core Course - 1	No of Lectu- res	Faculty	Paper	Core Course - 2	No of Lectu- res	Faculty	Internal Assessment by College	Parent Teacher Meeting
PHS- A-CC-	Mathematical Physics – I (Theory)	60		PHS- A-CC-	Mechanics (Theory)	60			
1-1TH	1. Calculus	20	GDP	1-2TH	1. Fundamentals of Dynamics	12	ВС		
	2. Vector Algebra and Vector Calculus	25	DP	-	2. Work and Energy	8	ВС	3 rd week of November	1 st week of December
	3. Matrices	15	SN	_	3. Gravitation and Central Force Motion	10	DP	-	
				_	4. Non-Inertial Systems	12	SD	_	
				_	5. Rotational Dynamics	12	SD	_	
					6. Fluid Motion	06	SD	_	
PHS- A-CC-	Mathematical Physics - I (Practical)	60	SN+	PHS- A-CC-	Mechanics (Practical)	60			
1-1P	1. Introduction to plotting graphs with Gnuplot	09	SD	1-2P	1.Moment of Inertia & Modulus of Rigidity		BC + GDP		
	2. Introduction to programming in python:				2. Moment of Inertia of a Flywheel			3 rd week of November	1 st week of December
	(a) Introduction	08			3. To determine the Young modulus, modulus of		-		

		rigidity and Poisson ratio of the material of a wire by Searle's Dynamic method.		
(b) The python iterables data type	15	4. To determine the value of g using Bar Pendulum.		
(c) Problems and applications	28	5. To determine the height of a building (or a suitable vertical height) using sextant.		
		6. Determination of Young's modulus of the material of a beam by the method of flexure.		

SEMESTER - II(CBCS)

January 23 – June 23

Paper	Core Course - 3	No of Lectu- res	Faculty	Paper	Core Course - 4	No of Lectu- res	Faculty	Internal Assessment by College	
PHS-	Electricity and	60		PHS-	Waves and Optics	60		v	
A-CC-	Magnetism (Theory)	0.2		A-CC-	(Theory)		5.0	_	
2-3- TH	1. Dirac delta function and it's properties	03	SN	2-4-TH	1. Oscillations	08	BC		
	2. Electrostatics	12	SN	1	2.Superposition of	04	BC	3 rd week of	1 st week of
					Harmonic oscillations			November	December
	3. Dielectric properties of matter	06	SN		3. Wave Motion	04	ВС		
	4. Method of Images	04	SN	_	4. Superposition of Harmonic waves	09	BC		
	5. Electrostatic Energy	03	SN	_	5. Wave Optics	04	GDP		
	6. The Magnetostatic Field	10	SD	_	6. Interference	10	GDP		
	7. Magnetic properties of matter	07	SD	_	7. Interferometers	05	DP		
	8. Electro-magnetic induction	07	SD	_	8. Diffraction	16	DP		
	9. Electrical circuits	08	SD	_					

PHS-	Electricity and	60		PHS-	Waves and Optics	60			
A-CC-	Magnetism (Practical)		SN +	A-CC-	(Practical)				
2-3-P	1. Introduction and		GDP	2-4-P	1. To determine the				
	Overview				frequency of an electric		BC +		
					tuning fork by Melde's		SD		
					experiment and verify $\lambda^2 - T$				
					law.			3 rd week of	1 st week of
	2. Basics of scientific				2. To study the variation of			November	December
	computing				refractive index of the				
					Material of a prism with				
					wavelengths and hence the				
					Cauchy constants using				
					mercury/helium source.				
	3. Errors and error				3. To determine wavelength				
	Analysis				of sodium light using				
					Fresnel Biprism.				
	4. Introduction to				4. To determine wavelength				
	plotting graphs with				of sodium light/radius of				
	Gnuplot / QtiPlot (or				plano convex lens using				
	some other GUI based				Newton's Rings.				
	free software like								
	Grace, Origin etc.)								
	5. Introduction to				5. To determine the		-		
	programming in				thickness of a thin paper by				
	python:				measuring the width of the				
					interference fringes				
					produced by a wedge-				
					shaped Film.				
	6. Programs				6. Measurement of the				
					spacing between the				
					adjacent slits in a grating by				
					measuring $\sin\theta$ vs graph of a				
					certain order of grating				
					spectra.				

SEMESTER – III (CBCS)

				July 2	22 – December 22				
Paper	Core Course - 5	No of Lectu- res	Faculty	Paper	Core Course - 6	No of Lectu -res	Faculty	Internal Assessment by College	
PHS- A-CC-	Mathematical Physics - II (Theory)	60		PHS- A-CC-	Thermal Physics (Theory)	60			
3-5- TH	1. Fourier Series	10	SD	3-6-TH	1. Introduction to Thermodynamics	25	GDP		
	2. Frobenius Method and Special Functions	20	SD	-	2. Thermodynamic Potentials	15	GDP	3 rd week of November	1 st week of December
	3. Some Special Integrals	04	SD	_	3. Kinetic Theory of Gases	15	DP	_	
	4. Integrals Transforms	10	SN	-	4. Conduction of Heat	05	DP		
	5. Introduction to probability	06	SN	-				_	
	6. Partial Differential Equations	10	SN	_				_	
PHS- A-CC-	Mathematical Physics - II (Practical)	60	SN+	PHS- A-CC-	Thermal Physics (Practical)	60	DP +		
3-5-P	1. Introduction to numpy and scipy:-		SD	3-6-P	1. Determination of the coefficient of thermal expansion of a metallic rod using an optical lever.		GDP	3 rd week of	1 st week of
	• the numpy array				2. Calibration of a thermocouple by direct measurement of the thermo-			November	December

					emf using potentiometer and the constants.				
	• Using numpy for matrix operators (the 2D numpy array)				3. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.				
	• Scientific Applications				4. To determine the boiling point of a liquid using Platinum Resistance Thermometer (PRT).				
	2. Introduction to mathplotlib (Using the pyplot submodule)				5. To determine Temperature Coefficient of Resistance using Carey Foster bridge.			-	
Paper	Core Course - 7	No of Lectu- res	Faculty	Paper	Skill Enhancement Courses – SEC-A1	No of Lectu	Faculty	Internal Assessment by College	
PHS- A-CC-	Modern Physics (Theory)	60		PHS- A-3-	Scientific Writing (Theory)	15		, , , , , , , , , , , , , , , , , , ,	
3-7- TH	1. Radiation and its nature.	15	BC	SEC- A-1	1. Introduction to L ATEX	2	SD		
	2. Basics of Quantum Mechanics	15	BC	ТН	2. Document classes	1	SD	3 rd week of	1 st week of
	3. Nuclear Structure	10	BC		3. Page Layout	2	SD	November	December
	4. Interaction with and within nucleus	12	DP		4. List structures	1	SD		
	5. Lasers	08	DP	-	5. Representation of mathematical equations	5	SN		
					6. Customization of fonts	1	SN		
					7. Writing tables	2	SN		
					8. Figures	1	SN		

PHS- A-CC-	Modern Physics (Practical)	60	ВС	PHS- A-3-	Scientific Writing (Project/Practical)	SD)		
3-7-P	Measurement of Plank constant using LED.			SEC- A-1 PR	1. Writing articles/ research papers/reports				
	2. Verification of Stefan's law of radiation by the measurement of voltage and current of a torch bulb glowing it beyond draper point.				2. Writing mathematical derivation			3 rd week of November	1 st week of December
	Determination of e/m of electrons by using bar magnet.				3. Writing Resume				
	4. To study the photoelectric effect: variation of photocurrent versus intensity and wavelength of light.				4. Writing any documentation of a practical done in laboratory with results, tables graphs.				
	5. To show the tunneling effect in tunnel diode using I-V characteristics.				5. Writing graphical analysis taking graphs plotted in gnuplot				

PHYSICS (HONS.) 2022-23 SEMESTER - IV(CBCS)

				Jan	uary 23 – June 23				
Paper	Core Course - 8	No of Lectu- res	Faculty	Paper	Core Course - 9	No of Lectu -res	Faculty	Internal Assessment by College	Parent Teacher Meeting
PHS- A-CC-	Mathematical Physics - III (Theory)	60		PHS- A-CC-	Analog Systems and Applications (Theory)	60			
4-8- TH	1. Complex Analysis	20	SN	4-9-TH	1. Circuits and Network	04	BC		
	2Variational calculus in Physics	20	SN		2. Semiconductor Diodes and application	08	ВС	3 rd week of November	1 st week of December
	3. Special theory of Relativity	20	SD		3. Bipolar Junction transistors and biasing	10	ВС		
					4. Field Effect transistors	05	BC		
					5. Regulated power supply	03	BC		
					6. Amplifiers	05	BC		
					7. Feedback amplifiers and OPAMP	15	GDP		
					8. Multivibrator	05	GDP	1	
					9. Oscillators	05	GDP		
PHS- A-CC-	Mathematical Physics – III (Practical)	60	SN+	PHSA- CC-4-	Analog Systems and Applications (Practical)	60			
4-8-P	1. Exploring Gaussian Integrals and the delta function		SD	9-P	1. To study the reverse characteristics of Zener diode and study the load and line regulation.		BC + GDP		
	2. Solution of Differential Equation				2. To study the static characteristics of BJT in CE Configuration.			3 rd week of November	1 st week of December

	3. Special functions				3. To design and study the frequency response of the				
					BJT amplifier in CE mode.				
	4. Solution of some basic PDEs				4. Construction of a series regulated power supply from an unregulated power supply.				
	5. Fourier Series				5. To study OPAMP: inverting amplifer, non inverting amplier, adder, substractor, comparator, Schmitt trigger, Integrator, differentiator, relaxation oscillator.				
			-		6. To design a Wien bridge oscillator for given frequency using an op-amp.				
	1		1		•				
Paper	Core Course - 10	No of Lectu- res	Faculty	Paper	Skill Enhancement Courses – SEC-B (Technical Skill)	No of Lectu -res	Faculty	Internal Assessment (by College)	Parent Teacher Meeting
PHS- A-CC-	Quantum Mechanics (Theory)	60		PHS- A-4-	ARDUINO (Theory)	15		(by conege)	- Vicesing
4-10- TH	1. Wavepacket description	05	DP	SEC- B-1-	1. Introduction to Arduino	02	GDP		
	2. General discussion of bound states in an arbitrary potential	08	DP	TH	2. Basic ideas	03	GDP	3 rd week of November	1 st week of December
	3. Quantum mechanics of simple harmonic oscillator	06	DP		3. Arduino Programming:	10	GDP		
	4. Quantum theory of hydrogen-like atoms	08	DP						

	5. Generalized Angular Momenta and Spin	10	SD				
	6. Spectra of Hydrogen atom and its fine structure	05	SD				
	7. Atoms in Electric & Magnetic Fields	08	SD				
	8. Many electron atoms	10	SD				
PHS- A-CC- 4-10-P	Quantum Mechanics (Practical) 1. Finding eigenstates solving transcendental equation	60	SN + DP	PHS- A-4- SEC- B-1-PR	ARDUINO (Practical/Project) 1. LED Blinking and fading.	GDP	
	2. Use of shooting algorithm				2. Measurement of voltages (Below 5 V and above).		
	3. Time Evaluation of Wave Packet				3. Interfacing 7 Segment display.		
					4. Construction of thermometer using LM35 or Others.		
					5. Construct the experimental set up for studying simple pendulum and hence determine the acceleration's due		
					to gravity. 6. Construct data logger for studying charging and discharging of RC circuit.		

PHYSICS (HONS.) 2022-23 SEMESTER - V(CBCS)

				July 2	22 – December 22				
Paper	Core Course - 11	No of Lectu- res	Faculty	Paper	Core Course - 12	No of Lectu- res	Faculty	Internal Assessment by College	Parent Teacher Meeting
PHS- A-CC- 5-11-	Electromagnetic Theory (Theory)	60		PHS- A-CC- 5-12-	Statistical Mechanics (Theory)	60		v 8	9
TH	1. Maxwell Equations	10	SN	ТН	Classical Statistical Mechanics	25	DP		
	2. EM Wave Propagation in Unbounded Media	20	SN	-	2. Classical Theory of Radiation	06	DP	3 rd week of November	1 st week of December
	3. EM Wave in Bounded Media	10	SN	-	3. Quantum Theory of Radiation	07	SD		
	4. Electromagnetic origin of Wave Optics	10	GDP	-	4. Bose-Einstein Statistics	12	SD		
	5. Polarization in uniaxial crystals		GDP		5. Fermi-Dirac Statistics	10	SD		
	6. Rotatory polarization.	10	GDP						
PHS- A-CC- 5-11-P	Electromagnetic Theory (Theory)	60	BC + DP	PHSA- CC-5- 12-P	Statistical Mechanics (Theory)	60	SD + SN		
	1. To determine Brewster's angle for airglass interface using a prism				1. Study of Random Numbers and Time series			3 rd week of	1 st week of
	2. To study Fresnels law by the reflection on the surface of a prism.				2. Applications of Random Numbers			November	December
	3. To verify the Malus law using a pair of polaroids.				3. Scaling and plots, exponents and parameters				
	4. To study the specific								

	rotation of opticlly active solution using polarimeter. 5. To determine dispersive power and resolving power of a plane diffraction grating.								
Paper	Discipline Specific Elective Courses	No of Lectu- res	Faculty	Paper	Discipline Specific Elective Courses	No of Lectu- res	Faculty	Internal Assessment by College	Parent Teacher Meeting
PHS- A-5- DSE-	Laser and Fiber Optics (Theory)	75		PHS- A-5- DSE-	Astronomy and Astrophysics - (Theory)	75			
A1(b)- TH	1.Einstein coefficients and Rate equations	20	BC	B1(a)- TH	1. Tools of Astronomy	15	SD		
	2. Basic properties of laser	04	ВС		2. Stars and stellar systems	25	SD	3 rd week of November	1 st week of December
	3. Resonantors	08	BC		3. Galaxies and the Universe	10	SD		
	4. Transient effect	05	BC	-	4. Cosmology	25	SN		
	5. Basic Laser Systems	07	BC						
	6. Practical properties and uses of laser	05	BC						
	7. Fiber optics	12	DP						
	8. Holography	04	DP						
	9. Introductory Nonlinear Optics	10	DP						
	Laser and Fiber Optics (Tutorial)	15	BC + DP		Astronomy and Astrophysics - (Tutorial)	15	SD + SN		

Paper	Discipline Specific Elective Courses	No of Lectu-	Faculty	Paper	Discipline Specific Elective Courses	Lectu-	Faculty	Internal Assessment by College	
PHS- A-5- DSE-	Nuclear and Particle Physics - (Theory)	res 75				res		by Conege	Meeting
B1(b)- TH	1. Introduction	5	GDP						
	2. Nuclear Reactions	10	GDP						
	3. Interaction of Nuclear Radiation with matter	15	GDP						
	4. Detector for Nuclear Radiations	15	SN						
	5. Particle Accelerators	15	SN						
	6. Particle Physics	15	SN						
	Nuclear and Particle Physics - (Tutorial)	15	GDP + SN						

SEMESTER – VI (CBCS) January 23 – June 23

Paper	Core Course - 13	No of	Faculty	Paper	Core Course - 14	No of	Faculty		Parent
		Lectu-				Lectu-		Assessment	
PIIC	2011	res		DITC		res	<u> </u>	by College	Meeting
PHS-	Digital Systems and	60		PHS-	Solid State Physics	60			
A-CC-	Applications (Theory)			A-CC- 6-14-	(Theory)				
6-13- TH	1. Integrated Circuits	05	BC	TH	1. Crystal Structure	12	SD		
	2. Number systems	07	BC		2. Elementary Lattice	10	SD	3 rd week of	1 st week of
					Dynamics			November	December
	3. Digital Circuits	16	BC	-	3. Magnetic Properties of	08	DP		
					Matter				
	4. Implementation of	06	BC	_	4. Dielectric Properties of	08	DP		
	different circuits				Materials				
	5. Data processing	05	BC	-	5. Drude model	04	DP		
	circuits								
	6. Sequential Circuits	06	GDP	-	6. Elementary band theory	12	SN		
	7. Registers and Counters	06	GDP		7. Superconductivity	06	SN		
	8. Computer	06	GDP	-		+			
	Organization								
	9. Data conversion	03	GDP	1		+			

PHS-A-CC-6-13-P	Digital Systems and Applications (Theory) 1. To design OR & AND logic with diode and resistor. Basic logic gates with Transistors. To verify the logics by any type of universal gate NAND/NOR. 2. Construction of half adder and full adder 3. Construction of SR, D, JK - FF circuits using NAND gates. 4. Construction of 4 bit shift registers (serial & parallel) using D type FF IC. 5. Construction of 4:1 multiplexure using basic gates and IC-74151	60	BC + GDP	PHS-A-CC-6-14-P	2. To determine dielectric constant of different materials (solid and liquid) using fixed frequency alternating source. 3. Measurement of variation of resistivity in a semiconductor and investigation of intrinsic band gap using linear four probe. 4. Measurement of hall voltage by four probe method 5. To study temperature coefficient of a semiconductor (NTC thermistor) and construction	60	DP + SN	3 rd week of November	1 st week of December
	IC. 5. Construction of 4:1 multiplexure using basic				5. To study temperature coefficient of a				

Paper	Discipline Specific Elective Courses	No of Lectu- res	Faculty	Paper	Discipline Specific Elective Courses	No of Lectu- res	Faculty	Internal Assessment by College	
PHS- A-6- DSE- A2(a) - TH	Nano Materials and Applications - (Theory) 1. Nanoscale Systems 2. Synthesis of Nanostructure Materials 3. Characterization 4. Optical Properties	75 10 15 10 15	GDP GDP SD	PHS- A-6- DSE- B2(a)- TH	Communication Electronics - (Theory) 1. Electronic communication 2. Analog Modulation 3. Analog Pulse Modulation 4. Digital Pulse Modulation	75 10 15 10 15	BC BC DP	3 rd week of November	1 st week of December
	5. Electron Transport6. Applications	10	SD SD		5. Introduction to Communication and Navigation systems	25	DP		
	Nano Materials and Applications - (Tutorial)	15	SD + GDP		Communication Electronics - (Tutorial)	15	BC + DP		

SEMESTER - I (CBCS)

July 22 – December 22

Paper	General/Elective	No of	Facul	Paper Paper	General/Elective	No of	Faculty	Internal	Parent
	Course - 1	Lectur	ty		Course - 1	Lectur		Assessment	Teacher
		es				es		(by College)	Meeting
	Mechanics (Theory)	60			Mechanics (Practical)	60			
	1. Mathematical Methods	15	DP		1. Determination of				
					Moment of inertia of				
					cylinder/ rectangular bar				
PHS-	2. Introduction to	05	BC	PHS-	2. Determination of Y-		DP +	3 rd week of	1 st week
G-CC-	Newtonian Mechanics			G-CC-	Modulus of a metal bar		BC	November	of
1-1TH				1-1P	by the method of flexure.				Decembe
(GE-1)	3. Rotational Motion	10	BC	(GE-1)	3. Determination of				r
					Rigidity modulus of the				
					material of a wire.				
	4. Central force and	10	SD		4. Determination of				
	Gravitation				Moment of Inertia of a				
					flywheel.				
	5. Oscillations	09	SD		5. Determination of g				
					using bar pendulum				
	6. Elasticity	06	GDP						
	7. Surface Tension	05	GDP				-		

SEMESTER – II (CBCS)

January 23 – June 23

Paper	GeneralElective Course - 2	No of Lectur es	Faculty	Paper	GeneralElective Course - 2	No of Lectur es	Faculty	Internal Assessment by College	
	Electricity and Magnetism (Theory)	60			Electricity and Magnetism (Practical)	60		, 8	8
PHS-	1. Essential Vector Analysis	5	DP	PHS-	1. Determination of unknown resistance by Carey Foster method.		BC +	3 rd week of	1 st week of
G-CC- 2-2TH (GE-2)	2. Electrostatics	25	DP	G-CC- 2-2P (GE-2)	2. Measurement of a current owing through a register using potentiometer.		DP	November	December
	3. Magnetism	15	SD		3. Determination of the horizontal components of earth's magnetic field.				
	4. Electro-magnetic induction	05	ВС		4. Conversion of an ammeter to a voltmeter.				
	5. Electrodynamics	10	ВС		5. Conversion of a voltmeter to an Ammeter.				

SEMESTER - III (CBCS)

July 22 – December 22

Paper	General/Elective Course - 3	No of Lectures	Faculty	Paper	General/Elective Course - 3	No of Lectur es	Faculty	Internal Assessment (by College)	Parent Teacher Meeting
	Thermal Physics and Statistical Mechanics (Theory)	60			Thermal Physics and Statistical Mechanics (Practical)	60			
PHS- G-CC- 3-3TH (GE-3)	1. Laws of Thermodynamics	18	SN	PHS- G-CC- 3-3P (GE-3)	1. Determination of the coefficient of thermal expansion of a metallic rod using an optical lever		DP + SN	3 rd week of November	1 st week of December
	2. Thermodynamic Potentials	09	SD		2. Verication of Stefan's law using a torch bulb glowing beyond draper point.				
	3. Kinetic Theory of Gases	10	DP		3. To determine the Thermal Coefficient of a resistance using Carey- Foster bridge.				
	4. Theory of Radiation	08	DP		4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and Charlton's disc method.				
	5. Statistical Mechanics	15	DP		5. Determination of the Pressure coefficient of air using Jolly's apparatus.				

SEMESTER – IV(CBCS)

January 23 – June 23

Paper	General/Elective Course - 4	No of Lectu-	Faculty	Paper	General/Elective Course - 4	No of Lectu	Faculty		Parent
	Course - 4	res			Course - 4	-res		Assessment by College	
	Waves and Optics (Theory)	60			Waves and Optics (Practical)	60			
PHS- G-CC-	1. Acoustics	10	SD	PHS- G-CC-	1. Determination of the focal length of a concave lens by auxiliary lens method.		DP + SN	3 rd week of November	1 st week of December
4-4TH (GE-4)	2. Superposition of vibrations	05	SD	4-4P (GE-4)	2. Determination of the frequency of a tuning fork with the help of sonometer using n-l curve.				
	3. vibrations in string	08	SN		3. Determination of radius of curvature / wavelength of				
	4. Introduction to wave optics	02	SN		a monochromatic / quasi monochromatic light using Newton's ring.				
	5. Interference	15	SN		4. Measurement of the thickness of a paper from a				
	6. Diffraction	10	DP	1	wedge shaped film.				
	7. Polarization	10	DP		5. Measurement of specific rotation of active solution (e.g., sugar solution) using polarimeter.				